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1. Introduction

The supersymmetry (SUSY) offers irresistible elegance to various branches in theoretical

high energy physics, yet the nature has not hinted its existence to date. So the SUSY, if

it exists, has to be broken in some way at the higher energy scale. The dynamical SUSY

breaking models thus far constructed tend to be baroque, which compromises the elegance

of the SUSY. To spare the virtue of supersymmetry, it would be desirable to find the way

to dynamically break SUSY in a minimal manner.

Recently Intriligator, Seiberg, and Shih (ISS) found a remarkably simple and beautiful

mechanism of dynamical SUSY breaking, once one accepts the SUSY breaking in meta-

stable vacua [1, 2]. The ISS model is just N = 1 SU(Nc) SQCD with Nf light quarks

in the range Nc + 1 ≤ Nf < 3
2Nf . The simplicity of their mechanism opened up a new

direction for the phenomenologically viable model-buildings of dynamical SUSY breaking

(see [2] for the references for the recent developments).

Besides phenomenological applications, it would be of great interest to see if a similar

mechanism is realizable in the realm of N = 1 gauge/string duality. This is the theme of

the present paper. Models of meta-stable dynamical SUSY breaking in this context were

previously proposed in [3, 4]. Also somewhat related to this theme is the realization of the

ISS-type models via brane configurations in Type IIA [5 – 7], MQCD [8], and noncritical

string theory [9], and by geometric engineerings [10 – 12].

The non-singular gravity/string duals to N = 1 gauge theories are the Klebanov-

Strassler (KS) geometry [13], its generalization by Butti, Graña, Minasian, Petrini, and

Zaffaroni [14], the Maldacena-Nuñez (MN) geometry [15], and the flavored MN geometry

by Casero, Nuñez, and Paredes [16]. In this paper we search for the models of dynamical

SUSY breaking in meta-stable vacua which might be dual to the KS and the flavored MN
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geometries with a small number of probe branes. The ISS-type models typically require the

number of flavors to be greater than the number of colors. In the gauge/gravity duality,

the number of colors must be taken to be large. So the most naive idea of adding flavors as

probes would not work. A large number of massless flavors, however, are built-in manifestly

in the flavored MN geometry and as bi-fundamentals of the A2 quiver in the KS geometry.

The ISS model with massless quarks was studied by Franco and Uranga [17]. In order to

break SUSY, the total number of massless and massive quarks must be greater than the

number of colors, but the massive quarks alone can be just a few. There is a subtlety

concerning the meta-stability of the SUSY breaking vacua due to the modulus associated

with the massless quarks. However, this modulus can be lifted by a quartic potential for

the massless quarks [18]. Given this observation, roughly speaking, the idea is to add a

few massive flavors as probes in the KS and flavored MN geometries and that the quartic

potential to lift the would-be troublesome modulus is present in the gauge theories dual to

these geometries.1

If our claim for the KS geometry is solidified, it would provide a very natural way

of breaking SUSY in the GKP-KKLT flux compactification [19, 20] in the same spirit

as [21, 4].

The organization of our paper is as follows. In section 2 and 3 we review the ISS

model and the ISS model with massless quarks respectively. In section 4 we add the quartic

potential for the massless quarks to the model reviewed in section 3 and discuss its virtues.

This is claimed to be closely related to the dual gauge theory to the flavored MN geometry.

In section 5, as an application of previous sections, we consider the KS gauge theory with

massive quarks, and discuss under what conditions the dynamical SUSY breaking occurs

in meta-stable vacua. In section 6 we discuss how the SUSY breaking model in section

5 might be realized in the KS geometry, and close the discussions with a comment on its

application to the KKLT model.

2. The ISS model

The N = 1 SU(Nc) SQCD with Nf quarks in the range Nc < Nf < 3Nf has Nc SUSY

vacua. However, Intriligator, Seiberg, and Shih [1] found a finer structure of vacua deeper

in the IR. When the quarks are massive but very light and the theory is in the free magnetic

phase Nc + 1 < Nf < 3
2Nc or in the confining phase Nf = Nc + 1 [22 – 24], there exist

meta-stable SUSY breaking vacua farther down in the IR.

To study the IR physics for Nc + 1 < Nf < 3
2Nc, the Seiberg duality [23] was used:

The dual magnetic theory is IR free and enables us to study more details of the dynamics

deep in the IR. The magnetic theory is SU(Nf − Nc) SQCD with Nf dual quarks q i
c

and q̃ c
i , N2

f singlets (mesons) M j
i , and the superpotential W = 1

ΛTr qMq̃ + Tr mM ,

1The validity of the probe approximation for flavor branes must be argued with caution. No matter how

small the number of flavor branes is, they generate the logarithmic gravitational potential in the UV. So

as we go sufficiently far in the UV, their back-reaction always prevails. However, we are interested in the

IR dynamics. There the probe approximation may be justified. We thank Aki Hashimoto for his stressing

this point.
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where m j
i is the quark mass matrix, c = 1, · · · , Nf − Nc, and i, j = 1, . . . , Nf .2 Since

the magnetic theory is IR free, the Kähler potential is smooth and takes the form K =
1
β Tr

(
q†q + q̃†q̃

)
+ 1

α|Λ|2
Tr M †M+· · ·, where the ellipses denote the higher order terms which

are negligible in the IR. The real positive dimensionless coefficients α and β are of order

one. Their precise values are not known, but we are only concerned about the qualitative

results.

In order to illustrate the main results of ISS, we only consider the equal mass case

m = −µ2

Λ 1Nf
. By rescaling q, q̃, and Φ ≡ M

Λ appropriately, we have the canonically

normalized Kähler potential and the superpotential

W = hTr qΦq̃ − hµ2TrΦ , (2.1)

where h is a dimensionless coupling (marginally irrelevant). The superpotential is not

renormalized in all orders in perturbation theory except for the renormalization of the

couplings due to the wavefunction renormalizations.

The first point to note is that the supersymmetry is spontaneously broken (in all orders

in perturbation theory). This is because the F-term

F
Φ j

i
=

∂W

∂Φ j
i

= h
(
q̃ c
j q i

c − µ2δ i
j

)
(2.2)

cannot be vanishing, since the rank of the matrix q̃ c
j q i

c is at most N ≡ Nf − Nc < Nf

while that of µ2δ i
j is Nf — the rank condition. The classical vacua, the minima of the

scalar potential, are at

Φ =

(
0N 0N×(Nf−N)

0(Nf−N)×N Φ0

)
, q =

(
q0 , 0N×(Nf−N)

)
, q̃T =

(
q̃0 , 0N×(Nf−N)

)
,(2.3)

where q0 = µeθ1N and q̃0 = µe−θ1N . The D-terms vanish on these vacua, and the vacuum

energy density of the SUSY breaking vacua is Vmin = (Nf − N)
∣∣h2µ4

∣∣.
The second point concerns the perturbative stability of the SUSY breaking vacua. Let

us consider the maximally symmetric vacua, Φ0 = 0 and θ = 0. Most of the fluctuations

about this vacua are massive. However, there remain two kinds of massless modes —

(1) Nambu-Goldstone (NG) modes due to the breaking of the global symmetries3 and (2)

the classical moduli δΦ0 and µRe δθ. The former remain massless quantum mechanically,

being protected by the symmetries. The latter, however, turned out to be lifted at one-loop,

acquiring the masses m2
Φ0

= ln 4−1
8π2 N |h4µ2| and m2

θ = ln 4−1
8π2 (Nf − N)|h4µ2|. The higher-

loops are negligible since the couplings are marginally irrelevant. Hence the maximally

symmetric vacua

Φ0 = 0 , q0 = q̃0 = µ1N (2.4)

2The dynamical scales of the dual pair are related by Λ3Nc−Nf eΛ3(Nf −Nc)−Nf = (−1)Nf−Nc Λ̂Nf , where

Λ is the scale of the electric theory, eΛ that of the magnetic theory, and Λ̂ the scale entering due to the

ambiguity associated with the rescaling of the dual quarks [24]. We have chosen Λ̂ = Λ for our convenience.
3The magnetic dual theory with the superpotential (2.1) has the global symmetries SU(Nf )D ×U(1)B ×

U(1)R where SU(Nf )D ⊂ SU(Nf )×SU(Nf ). The maximally symmetric vauum breaks the gauge symmetry

SU(N) completely, but the global symmetries are broken to SU(N)D ×SU(Nf −N)×U(1)B′ ×U(1)R where

SU(N)D ⊂ SU(Nf ) × SU(Nf ).
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are the perturbatively stable quantum vacua (whose moduli space is parameterized by the

NG bosons).

The third point to note is the existence of the SUSY vacua due to the non-perturbative

effect, rendering the SUSY breaking vacua meta-stable. The SUSY vacua appear elsewhere

in the field space of Φ: Consider the physics at the energy scale E < hΦ. Through the

cubic coupling the dual quarks q and q̃ acquire the effective masses of order |hΦ|. Thus

they can be integrated out in the low energy effective theory at the energy scale E. Now

the low energy effective theory becomes pure N = 1 SU(N) Yang-Mills theory. The

superpotential of N = 1 SU(N) Yang-Mills is generated by the gaugino condensation

and given by WYM = NΛ3
L where ΛL is the dynamical scale of the low energy theory. The

matching of the couplings at the energy scale (det(hΦ))1/Nf yields Λ3N
L = Λ3N−Nf det(hΦ).

Thus the superpotential of the low energy effective theory is given by

WL = WYM − hµ2TrΦ = N
(
hNf Λ3N−Nf det Φ

) 1
N − hµ2TrΦ . (2.5)

This yields Nc SUSY vacua

〈hΦ〉 = Λǫ2N/(Nf−N)1Nf
= µǫ−(Nf−3N)/(Nf−N)1Nf

, (2.6)

where ǫ = µ/Λ.

In order to ensure the validity of the analysis, the parameter |ǫ| ≪ 1: The energy

scales of the SUSY breaking, the SUSY vacua, and the Landau pole are well separated as

|µ| ≪ |〈hΦ〉| ≪ |Λ| . (2.7)

These inequalities vindicate the use of the magnetic dual description to extract the IR

physics. The first inequality in particular justifies integrating out the dual quarks, and

implies the longevity of the meta-stable SUSY breaking vacua.

In the confining case Nf = Nc +1, there is no magnetic dual description. However, the

non-perturbative superpotential is known in terms of the baryons Bi and B̃i and the mesons

M j
i where i, j = 1, . . . , Nf . The result is essentially the extrapolation of the Nc + 1 < Nf

case to N(= Nf − Nc) = 1 with q = B/ΛNc−1, q̃ = B̃/ΛNc−1, and Φ = M/Λ, up to the

rescalings by numerical constants:

W =
1

Λ2Nc−1

(
Tr BMB̃ − det M

)
+ TrmM , (2.8)

with the Kähler potential K = 1
β|Λ|2Nc−2 Tr

(
B†B + B̃†B̃

)
+ 1

α|Λ|2
Tr M †M . Therefore the

same conclusion as the Nc + 1 < Nf case holds.

In summary, N = 1 SQCD with Nf light flavors in the range Nc + 1 ≤ Nf < 3
2Nc has

meta-stable SUSY breaking vacua in the deeper IR in addition to Nc SUSY vacua.

3. The ISS model plus massless quarks

The models to be proposed which dynamically breaks SUSY in meta-stable vacua and may

have dual string descriptions typically contain a large number of massless quarks and a few
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massive quarks. So as a preliminary we first review the ISS model plus massless quarks

studied by Franco and Uranga [17].

Let Nf,0 and Nf,1 be the number of massless and massive quarks respectively. For the

SU(Nf,0 +Nf,1 −Nc) dual magnetic theory to be IR free, the theory has to be in the range

Nc + 1 < Nf = Nf,0 + Nf,1 < 3
2Nc. The classical superpotential of the magnetic theory is

given by

W = h (Tr q0Φ00q̃0 + Tr q0Φ01q̃1 + Tr q1Φ10q̃0) +
(
hTr q1Φ11q̃1 − hµ2Tr Φ11

)
, (3.1)

where qs and q̃s are the dual quarks, and Φs are the mesons as in the previous section.

The subscripts 0 and 1 denote the degrees of freedom associated with massless and massive

quarks respectively. We have chosen the mass matrix to be m = −µ2

Λ 1Nf,1
.

Exactly as in the ISS model, the supersymmetry is broken in all orders in perturbation

theory, if N ≡ Nf,0 + Nf,1 − Nc < Nf,1, i.e., Nf,0 < Nc, since the F-term

F
(Φ11) j

i
=

∂W

∂(Φ11)
j

i

= h
(
(q̃1)

c
j (q1)

i
c − µ2δ i

j

)
(3.2)

cannot be vanishing because of the rank condition — the rank of the matrix (q̃1)
c

j (q1)
i

c is

at most N < Nf,1 while that of µ2δ i
j is Nf,1, where c = 1, . . . , N and i, j = 1, . . . , Nf,1.

Classically the SUSY breaking vacua are at

q0 = q̃T
0 = 0 , Φ01 = (0Nf,0×N , Φ̂01) , Φ10 =

(
0N×Nf,0

Φ̂10

)

q1 =
(
q ,0N×(Nf,1−N)

)
, q̃T

1 =
(
q̃ ,0N×(Nf,1−N)

)
, (3.3)

Φ11 =

(
0N 0N×(Nf,1−N)

0(Nf,1−N)×N Φ̂11

)
, Φ00 = arbitrary ,

where Φ̂01 and Φ̂T
10 are Nf,0 × (Nf,1 − N) matrices, q = µeθ1N , and q̃ = µe−θ1N . The

D-terms vanish on these vacua, and the vacuum energy density of the SUSY breaking vacua

is Vmin = (Nf,1 − N)
∣∣h2µ4

∣∣.
Unlike the ISS model, the stability of the SUSY breaking vacua is more subtle and

potentially non-perturbatively unstale: Let us consider the maximally symmetric vacua,

Φ̂11 = 0, θ = 0, Φ̂01 = Φ̂T
10 = 0, and Φ00 = 0. There are again two kinds of massless

modes about this vacua — (1) NG modes and (2) the classical moduli δΦ̂11, µRe θ, δΦ̂01,

δΦ̂10, and δΦ00. The former remain massless quantum mechanically, being protected by

the symmetries. The latter, except for δΦ00, are lifted at one-loop, acquiring the masses

m2
Φ̂11

= ln 4−1
8π2 N |h4µ2|, m2

θ = ln 4−1
8π2 (Nf − N)|h4µ2|, and m2

Φ̂01
= m2

Φ̂10
= ln 4−1

8π2 N |h4µ2|.

The modulus δΦ00 remains massless at one-loop. It might or might not be lifted at

higher-loops. If not, the SUSY breaking vacua is non-perturbatively unstable: Consider

the energy scale E < hΦ00, hΦ11. Since the dual quarks have the effective masses of order

|hΦ00|, |hΦ11|, they can be integrated out at this energy scale. Then the low energy effective

theory becomes pure N = 1 SU(N) Yang-Mills theory, generating the non-perturbative

superpotential by the gaugino condensation WYM = NΛ3
L with ΛL being the dynamical

– 5 –
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scale of the low energy effective theory. The matching of the gauge couplings at the energy

scale (det hΦ00 det hΦ11)
1

Nf reads Λ3N
L = Λ3N−Nf det hΦ00 det hΦ11. Thus the low energy

effective superpotential yields

WL = N
(
hNf Λ3N−Nf det Φ00 det Φ11

) 1
N − hµ2Tr Φ11 . (3.4)

Integrating out Φ11 then gives

WL = −(Nf,1 − N)

(
µ2Nf,1ΛNf−3N

hNf,0 det Φ00

) 1
Nf,1−N

. (3.5)

This leads to a run-away potential. Although the magnetic dual analysis can be trusted

only at |hΦ00|, |hΦ11| ≪ |Λ|, the run-away behavior at higher energy scale is completed by

the electric theory analysis.4 Hence if the modulus δΦ00 is not lifted at higher-loops, the

SUSY breaking vacua are non-perturbatively unstable along the Φ00 direction.

In order to evade this subtlety, Franco and Uranga introduced new N2
f,0 singlets (Σ0)

j
i

(i, j = 1, . . . , Nf,0) and the additional superpotential Wadd = µ0Tr Σ0Φ00 which in terms

of the electric theory takes the form Wadd = µ0

Λ Tr Q0Σ0Q̃0. Then Φ00 is fixed to be zero by

the equation of motion w.r.t. Σ0 and simply is not a modulus already at the classical level.

The SUSY breaking vacua are now meta-stable and the SUSY vacua are at |Σ0| → ∞

where |Φ00| → 0 and |Φ11| → 0.5

4. A model with quartic superpotential

We now consider another way of lifting the modulus δΦ00 motivated by N = 1 gauge/string

duals, in particular, the flavored MN geometry by Casero, Nuñez, and Paredes [16] and

the KS geometry [13]. One characteristic of the gauge theory duals of these geometries is

the presence of the quartic superpotential for the massless flavors.

We thus add the quartic superpotential Wadd = λ(Q0)ci(Q̃0)
id(Q0)dj(Q̃0)

jc (c =

1, . . . , Nc and i, j = 1, . . . , Nf,0) for the massless quarks. In the dual magnetic descrip-

tion the corresponding superpotential is Wadd = λ̃TrΦ2
00 with λ̃ ∝ λΛ2 [25].6 This lifts the

modulus δΦ00, rendering the SUSY breaking vacua meta-stable [18]. The one-loop effective

potential remains the same as the one without Wadd, since δΦ00 does not couple to the

SUSY breaking fields.

4The superpotential (3.5) is the Affleck-Dine-Seiberg potential for N = 1 SU(Nc) SQCD with Nf,0 < Nc

massless quarks. This can be obtained in the electric theory after integrating out Nf,1 massive quarks at

the energy scale E < |µ2/Λ|. For the run-away potential to be completed in the UV, it would be necessary

that |µ| ≫ |Λ| in this preliminary model.
5This endangers the validity of integrating out the quarks. However, as long as the tail of |Σ0| is

amputated, no matter how far it is, |hΦ00| and |hΦ11| can be made parametrically larger than |µ|, if

|ǫ| = |µ/Λ| ≪ 1 and |µ0/µ| ≫ 1. The model in the next section does not have this subtlety.
6There is an apparent puzzle of the (ir)relevancy of the couplings: Classically λ is irrelevant, while eλ

is relevant. However, for the duality to work, their (ir)relevancy must be the same. Indeed, due to the

strong coupling effect, the (dual) quarks could receive significant anomalous dimensions in the IR. This

resolves the puzzle: For example, in the Nf,1 = 0 case, λ and eλ are relevant when Nf,0 < 2Nc, marginal at

Nf,0 = 2Nc, and irrelevant when Nf,0 > 2Nc.
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However, there is a notable difference in the SUSY vacua. Similarly to the previous

case (3.4), The low energy effective potential at the energy scale E < hΦ00, hΦ11 yields

WL = N
(
hNf Λ3N−Nf det Φ00 det Φ11

) 1
N − hµ2Tr Φ11 + λ̃Tr Φ2

00 . (4.1)

Integrating out Φ11, it becomes

WL = −(Nf,1 − N)

(
µ2Nf,1ΛNf−3N

hNf,0 detΦ00

) 1
Nf,1−N

+ λ̃TrΦ2
00 . (4.2)

Thus the SUSY vacua appear at

Φ00 =

(
µ2Nf,1ΛNf−3N

(−2λ̃)hNf,0

) Nf,1−N

Nf +Nf,1−2N

1Nf,0
. (4.3)

One can easily check that if |ǫ| =
∣∣ µ
Λ

∣∣ ≪ 1, the scales of SUSY breaking, SUSY vacua, and

the Landau pole of the magnetic theory obey the inequalities µ ≪ hΦ00, hΦ11 ≪ Λ.7 This

ensures the legitimacy of our analysis as in the ISS model.

Casero, Nuñez, and Paredes argued that their flavored MN geometry in the IR is

closely related to N = 1 SU(Nc) SQCD with Nf massless quarks and the quark quartic

potential [16]. They provided several qualitative evidence for the claim. Given that, it

might be possible to see the dynamical SUSY breaking in meta-stable vacua by adding

flavor D5-branes corresponding to massive quarks in their background [26]: We take Nc

to be large and Nf,0, for example, to be Nc − 1 which satisfies the rank condition. Then

the number of massive flavors can be just a few, say, Nf,1 = 3 which is compatible with

the IR free condition for the magnetic theory.8 This justifies the probe approximation.

However, one may worry that the quartic potential for the massive quarks too might be

generated. At this point, it is not entirely clear if that is the case. The massive flavor D5-

branes have quite different embeddings from the massless flavor D5-branes that created

the background [26]. So it could be that there is an embedding which corresponds to the

massive quarks without the quartic potential. Then there is the hope that we might be

able to see the meta-stable SUSY vacua in the probe approximation. However, even if

that is the case, the SUSY vacua may not be visible in the probe approximation. This is

because the SUSY vacua involve the vev of mesons for the massless quarks. On the gravity

side this may be accounted for only by a deformation of the background flavor branes.

In sum, the meta-stable SUSY breaking vacua might be realized in the flavored MN

geometry with a few D5-brane probes, but the SUSY vacua may not.

5. A model based on Klebanov-Strassler theory

We next look for the models with dynamical SUSY breaking in meta-stable vacua which

may be dual to the KS geometry with a few additional brane probes. The basic idea of

7Upon integrating out Φ11, we obtain Φ11 =
`
hN−Nf µ2N det Φ00/Λ

3N−Nf
´1/(Nf,1−N)

1Nf,1
.

8Nf,1 = 2 might as well be good, corresponding to N = 1.
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finding meta-stable SUSY breaking vacua is the same as the previous model with the simple

quartic potential.

The KW-KS gauge theory is N = 1 SU(N1 = N + M) × SU(N2 = N) gauge theory

with massless bi-fundamentals and the quartic potential [27, 13]

W = λTra det
αα̇

AαiB
i
α̇ = λ

(
Aa

1iB
i
1bA

b
2jB

i
2a − Aa

1iB
i
2bA

b
2jB

j
1a

)
, (5.1)

where Aa
αi and Bi

α̇a are bi-fundamentals (N1,N2) and (N1,N2) respectively, and α, α̇ =

1, 2, i = 1, . . . , N1, and a = 1, . . . , N2.

We now add Nf massive quarks Qr = (Qir, Q
′
ar) and Q̃r = (Q̃ri, Q̃′

ra
) where i =

1, . . . , N1, a = 1, . . . , N2, and r = 1, . . . , Nf . They are (anti-)fundamentals of SU(N1) ×

SU(N2). The one-loop beta functions for the SU(N1) and SU(N2) gauge couplings are

given by

β(N1) = −
g3
1

16π2
(N + 3M − Nf ) ,

β(N2) = −
g3
2

16π2
(N − 2M − Nf ) .

We consider the case where the SU(N1) theory is asymptotically free, while the SU(N2)

theory is IR free,

N < 2M + Nf and N + 3M > Nf . (5.2)

We denote the strong coupling scale of the SU(N1) theory by Λ1 and the Landau pole of

the SU(N2) theory by Λ2.

To study the IR physics of this theory, we dualize the SU(N1) theory to its magnetic

description, that is, SU(Ñ = N +Nf −M) SQCD with 2N +Nf flavors and SU(N1) singlets

as well as the SU(N1) neutral components Q′ and Q̃′ of the massive quarks. The superpo-

tential of this magnetic dual theory takes the form (plus the mass term Tr mQ′Q̃′) [25]

W = h
(
TrAβYββ̇B

β̇ + TrAβZβ q̃ + Tr qZβ̇B
β̇
)
+

(
hTr qZq̃ − hµ2Tr Z

)
+λ̃Tr det

β,β̇
Y , (5.3)

where the trace is over SU(Ñ) and SU(N2 = N) indices. The dual quarks Aβ are SU(Ñ )

fundamentals and N2, and the dual anti-quarks Bβ̇ are SU(Ñ) anti-fundamentals and N2.

Another dual quarks q are SU(Ñ) fundamentals and Nf , and the dual anti-quarks q̃ are

SU(Ñ) anti-fundamentals and Nf . The SU(N1) singlets Yββ̇ are (N2,N2), Zβ (N2,Nf ),

Zβ̇ (Nf ,N2), and Z (Nf ,Nf ). The singlets Yββ̇ correspond to the AB mesons, Z the QQ̃

mesons, Zβ the AQ̃ mesons, and Zβ̇ the QB mesons.

For the SU(Ñ ) magnetic theory to be IR free, the theory has to be in the range

3Ñ < 2N + Nf ⇐⇒ N + 2Nf < 3M . (5.4)

We denote the Landau pole of the SU(Ñ) theory by Λ. Similarly to the ISS plus massless

case with the superpotential (3.1), the SUSY breaking rank condition requires

Ñ < Nf ⇐⇒ N < M . (5.5)
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In order for the Seiberg dual description to exist, Ñ must be greater than one. Hence the

number M is bounded by

N < M < N + Nf − 1 . (5.6)

After dualizing the SU(N1) theory, the one-loop beta function for the SU(N2) theory

becomes

β̃(N2) = −
g3
2

16π2

(
3N2 − 2Ñ − Nf − 2Nf − 4N2

)
= −

g3
2

16π2
(2M − 3N − 5Nf ) . (5.7)

In addition to 2Ñ + Nf SU(N2) (anti-)fundamentals, the pair of mesons (Zβ , Zβ̇) are 2Nf

quarks for the SU(N2) theory, and the mesons Yββ̇ are four adjoints. So if the energy scale

we are probing at is around or above the mass scales of the SU(N2) matters but well below

the new Landau pole Λ̃2, in the range (5.6) the one-loop beta function is positive and the

SU(N2) theory remains IR free.

Since the SU(N2) adjoint matters Yββ̇ have the mass λ̃, they are to be integrated out

below the energy scale λ̃. So at this energy scale, the SU(N2) theory becomes asymptot-

ically free.9 However, as we discuss below, we will be interested in the energy scale at or

above µ. Moreover, having the gauge/string duality in mind, we would like to consider the

situation where the SU(N1) mesons Yββ̇ can be regarded as the light degrees of freedom.

So we require that λ̃ ∼ µ (≪ Λ̃2). Then the SU(N2) theory remains IR free around the

energy scale µ.

Under the conditions we discussed above, the dual SU(Ñ) × SU(N2 = N) theory

with the superpotential (5.3) (plus the mass term Tr mQ′Q̃′) is IR free, and the Kähler

potential is smooth. It is thus effective to use this dual description to study the IR physics.

Similarly to the previous examples, the supersymmetry is spontaneously broken in all

orders in perturbation theory, since the F-term

FZ =
∂W

∂Z
= h

(
q̃q − µ21Nf

)
(5.8)

cannot be vanishing due to the rank condition Ñ < Nf . The SUSY breaking vacua are at

Aβ = Bβ̇T = 0 , Zβ = (0
N× eN

, Ẑβ) , Zβ̇ =

(
0 eN×N

Ẑβ̇

)
,

q =
(
q0 ,0 eN×(Nf− eN)

)
, q̃T =

(
q̃0 ,0 eN×(Nf− eN)

)
, (5.9)

Z =

(
0 eN 0 eN×(Nf− eN)

0(Nf− eN)× eN Ẑ

)
, Yββ̇ = 0 ,

where q0 = µeθ1 eN
and q̃0 = µe−θ1 eN

. The N ×(Nf −Ñ) matrices Ẑβ and Ẑ†

β̇
must be equal

due to the D-flatness condition Tr
(
Ẑ†

βTAẐβ − Ẑβ̇TAẐ†

β̇

)
= 0. Note that Yββ̇, the analogue

9The strong coupling scale Λ′

2 may be found by the matching of the couplings: (Λ′

2)
2M+N−5Nf =

eΛ2M−3N−5Nf

2
eλ4N , or equivalently Λ′

2 = eΛ2(eλ/eΛ2)
4N/(2M+N−5Nf ). If eλ > eΛ2, there is no reason to consider

the IR free SU(N2) theory with the Landau pole eΛ2 at all. We only consider the case eλ ≪ eΛ2.
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of Φ00 in the previous sections, is fixed to be zero due to the quadratic term λ̃Tr detβ,β̇ Y in

the superpotential, the magnetic dual of the quartic potential. The vacuum energy density

of the SUSY breaking vacua is Vmin =
(
Nf − Ñ

) ∣∣h2µ4
∣∣.

The perturbative stability of the SUSY breaking vacua can be argued in much the same

way as in the previous section: Let us consider the maximally symmetric vacua, Ẑ = 0,

θ = 0, Ẑβ = Ẑ†

β̇
= 0. The pseudo-moduli in this case are δẐ, µRe δθ, and 1

2

(
δẐβ + δẐ†

β̇

)
.

The presence of the SU(N2) gauge fields is the only notable difference from the previous

case. However, the SU(N2) gauge fields do not directly couple to the SUSY breaking

fields, the Ñ × (Nf − Ñ) block of q and q̃T , which are SU(N2) neutral. The SU(N2)

matters acquire masses but all of order µ, assuring the IR freedom and the weakness of

the coupling around the energy scale µ. So its presence will not affect the result for the

one-loop effective potential. Thus the pseudo-moduli are lifted exactly in the same way as

in the previous case.

The SUSY vacua appear elsewhere in the field space of Yββ̇ and Z. At the energy scale

E < hYββ̇, hZ, all the dual quarks can be integrated out. The dual theory then becomes

pure N = 1 SU(Ñ ) Yang-Mills theory (plus SU(Ñ) neutral quarks Q′ and Q̃′), ignoring

the SU(N2) gauge fields. Similarly to (4.1), we find the low energy effective superpotential

(plus the mass term Tr mQ′Q̃′)

WL = Ñ

(
h2N+Nf Λ3 eN−2N−Nf det

SU(N2)

(
det
β,β̇

Y

)
det Z

) 1
eN

− hµ2Tr Z + λ̃TrSU(N2) det
β,β̇

Y .

(5.10)

Integrating out Z then yields

WL = −(Nf − Ñ)


 µ2Nf Λ2N+Nf−3 eN

h2N detSU(N2)

(
detβ,β̇ Y

)




1

Nf− eN

+ λ̃TrSU(N2) det
β,β̇

Y . (5.11)

Reinstating the SU(N2) gauge fields, this low energy effective theory is N = 1 SU(N2)

gauge theory with the adjoint matters Yββ̇, Nf massive quarks Q′, Q̃′, and the superpo-

tential (5.11). The SUSY vacua are at

det
β,β̇

Y =

(
ζ

1
M−N

−λ̃

)M−N
M

1N , (5.12)

where ζ = µ2Nf Λ3M−N−2Nf /h2N . It is again easy to check that if |ǫ| =
∣∣ µ
Λ

∣∣ ≪ 1, the

scale of SUSY breaking, the SUSY vacua, and the Landau pole of the dual theory obey

the inequalities µ ≪ |hYββ̇ |, |hZ| ≪ Λ. At this energy scale, the one-loop beta function is

proportional to 3N2 − 4N2 − Nf = −N2 − Nf and so is positive. The theory is IR free

and in the weak coupling regime, and the SU(N2) gauge fields won’t affect the low energy

effective potential. Assuming that |Λ̃2| is not too smaller than |Λ|, this ensures the validity

of our analysis.

Having the gauge/string duality in mind, we will be interested in fairly large N . Then

the minimal values of M and Nf which are compatible with all the above conditions are

M = N + 1 and Nf = 3 , (5.13)
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corresponding to the SU(2N + 1) × SU(N) KW-KS theory with 3 massive quarks. The

case, M = N + 1 and relatively small Nf , will be our favorite choice.

We now consider the case when the SU(N1) theory is confining — the number of flavors

is equal to the number of colors plus one, that is, N1+1 = 2N2+Nf , or equivalently M+1 =

N + Nf . In this case the strongly coupled SU(N1) theory does not have the magnetic dual

description. However, the non-perturbative superpotential is known in terms of the baryons

and the mesons. The result is essentially the extrapolation of the M < N + Nf − 1 case to

M = N + Nf − 1.

We only discuss the minimal value case, M = N + 1 and Nf = 2. The gauge theory

of our interest is thus N = 1 SU(2N + 1)× SU(N) KW-KS theory with 2 massive quarks.

For the SU(N1 = 2N + 1) theory, the mesons and the baryons are given by

(Yαα̇)ab = Aa
αiB

i
α̇b , (Zα)as = Aa

αiQ̃
is ,

(Zα̇)rb = QirB
i
α̇b , Zs

r = QirQ̃
is,

qr = ǫi1···iN1
(
Aa1

α1

)
i1
· · ·

(
A

aN1−1
αN1−1

)
iN1−1

QiN1
r ,

q̃s = ǫi1···iN1
(Bα̇1a1)

i1 · · ·
(
Bα̇N1−1aN1−1

)iN1−1

Q̃iN1
s , (5.14)

A
αN1−1
aN1−1 = ǫ(a1,α1)···(aN1−1,αN1−1)ǫ

i1···iN1

(
Aa1

α1

)
i1
· · ·

(
A

aN1−2
αN1−2

)
iN1−2

QiN1−1rQiN1
s ,

Bα̇N1−1aN1−1 = ǫ(α̇1,a1)···(α̇N1−1,aN1−1)ǫi1···iN1
(Bα̇1a1)

i1. . .
(
Bα̇N1−2aN1−2

)iN1−2

Q̃iN1−1aN1−1Q̃iN1
aN1,

where α, α̇ = 1, 2, i = 1, . . . , 2N +1 for color N1, a, b = 1, . . . , N for color N2, and r, s = 1, 2

for flavor Nf . There are not enough non-vanishing components of the quarks to compose

any other baryons (after the gauge and global symmetry rotations). The baryons can be

heuristically thought of as the dual quarks for the “SU(Ñ = 1)” theory, and the mesons as

“SU(Ñ = 1)” singlets.

The superpotential is essentially the sum of the perturbative potential (5.3) and the

non-perturbative potential (5.10) with Ñ = 1 and the appropriate normalization of the

fields similar to (2.8). Hence this case also exhibits the dynamical SUSY breaking in

meta-stable vacua.

In summary under certain conditions the KW-KS gauge theory with light quarks has

meta-stable SUSY breaking vacua in the deeper IR in addition to the SUSY vacua. As an

example, the SU(2N +1)×SU(N) KW-KS theory with Nf ≥ 2 quarks and N ≫ 1 satisfies

the requisite conditions.

6. Discussions

The KS geometry is dual to the Z2 symmetric baryonic branch of the SU((k + 1)N) ×

SU(kN) KW-KS theory which cascades to the SU(2N)×SU(N) theory in the IR [28 – 31].

Thus we propose that the meta-stable SUSY breaking vacua might be visible in the KS

geometry with one fractional D3/wrapped D5-brane and a few D7-branes as probes: Let

us consider the SU(N1) confining case, M = N + 1 and Nf = 2. At the SUSY breaking
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vacua, the baryons q = q̃T 6= 0 for which U(1)B is broken and there is a Z2 symmetry

q ↔ q̃T . Note in particular that we can choose
∣∣∣∣ǫ

i1···iN1
(
Aa1

α1

)
i1
· · ·

(
A

aN1−1
αN1−1

)
iN1−1

∣∣∣∣ =

∣∣∣∣ǫi1···iN1
(Bα̇1a1)

i1 · · ·
(
Bα̇N1−1aN1−1

)iN1−1

∣∣∣∣ 6= 0 ,

(6.1)

and the mesons Yαα̇ = AαBα̇ = 0. So the meta-stable SUSY breaking vacua can be built

on the Z2 symmetric baryonic branch of the SU(2N)×SU(N) theory. However, the SUSY

vacua may not fit in the baryonic branch. Obviously the U(1)B symmetry is not broken at

the SUSY vacua. Moreover, the mesons Yαα̇ acquire the vevs which would be interpreted

as D3-branes in the bulk of deformed conifold, while the baryonic branch corresponds to

a BPS bound state at threshold of 2N wrapped D5 and N anti D5-branes at the tip [30].

This seems to suggest that the meta-stable SUSY breaking vacua might be realized in the

KS geometry by adding a few probe branes, but the SUSY vacua may not. The decay from

the SUSY breaking to SUSY vacua may correspond to the process N D5-branes paired up

with N anti D5-branes to form N D3-branes escaping to the bulk and absorbed into the

D7-branes off the tip. So the KS geometry has to be deformed in the decay process.

However, among other things, we have a few points to worry about. It was necessary

to consider |λ̃| ∼ |µ| ≪ |Λ|, |Λ̃2| and |Λ̃2| not too smaller than |Λ|, for our analysis to be

trustable. It is not clear if these conditions can be met when N and gsN (gs ≪ 1) are

large on the gravity side. If not, we might have to go beyond the classical supergravity

approximation in order to see the meta-stable SUSY vacua. Also as we take N large, |Yββ̇|

at the SUSY vacua comes close to |Λ|, as we can see from (5.12). This renders our field

theory analysis of SUSY vacua unreliable, although the SUSY vacua may not be seen in

the supergravity probe approximation in any case.

Nonetheless let us remark on the probe D7-branes in the KS geometry. First, the

supersymmetric embeddings of probe D7-branes in the KS geometry dual to massive quarks

were studied in [32 – 34]. In addition to the mass term, these embeddings typically generate

additional quartic terms of the type QABQ̃ [33, 34] which translate to Q′Y Q̃′ and ZβZβ̇.

So in discussing the gauge/string duality these types of terms should be included in our dual

gauge theory analysis. However, their presence does not seem to afflict or alter much of our

analysis. We suspect that these supersymmetric embeddings correspond to the vacua (5.9)

in the M = N (or equivalently Ñ = Nf ) case where the F-term FZ vanishes and the SUSY

is not broken. Second, there exists in fact a perturbatively stable non-supersymmetric

embedding of D7-branes in the KS geometry [35]. Their embedding requires nontrivial

gauge fields and necessarily induces extra D3-brane charge on the D7-branes. This is

perhaps the type of embeddings we are after, although their embedding does not have the

free parameter which might have corresponded to the mass scale µ. It might be that their

D7-branes or similar can support an instanton-like gauge configuration localized near the

tip which represents a wrapped D5-brane and whose size corresponds to the mass scale

µ ∼ 〈q〉.

Finally, provided that our claim be confirmed, we may use this SUSY breaking mech-

anism in the KS throat of the GKP-KKLT flux compactification [19, 20]. It is somewhat

in a similar spirit as the models considered in [36 – 38], but the ISS-like SUSY breaking is
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now realized entirely in the gravitational sector as in [4, 21]. This would provide a new

natural brane setup to the uplifting of the vacuum energy leading to de Sitter vacua. It

would be very interesting to explore this possibility further.
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